Anti-CD133 Antibody Immobilized on the Surface of Stents Enhances Endothelialization

نویسندگان

  • Jian Li
  • Dan Li
  • Feirong Gong
  • Shaoyan Jiang
  • Hua Yu
  • Yi An
چکیده

Drug eluting stents successfully reduce restenosis at the cost of delayed reendothelialization. In recent years, a novel concept to enhance reendothelialization using anti-CD34 antibody coated stents which capture circulating progenitor cells (EPCs) has been developed with conflicting clinical results. CD133 is a glycoprotein expressed on circulating hematopoietic and putative endothelial-regenerating cells and may be superior to CD34 for EPCs capture stents. In the present study, anti-CD133 antibody has been successfully immobilized to the biodegradable polymeric coating material by covalent conjugation. We explore whether anti-CD133 antibody coated stents (CD133 stents) might accelerate reendothelialization in comparison with bare metal stents (BMS) through the superior ability to capture EPCs. The in vitro cell culture results indicate that anti-CD133 antibody functionalized polymer film significantly promotes CD133 positive cells attachment and growth compared with the unfunctionalized polymer film. In the semi-in vivo arteriovenous shunt model CD133 stents demonstrate much quicker specific capturing of EPCs from the blood stream than BMS within 6 hours. In a porcine coronary artery injury model CD133 stents show more effective reendothelialization in short term compared with BMS, while no significant difference in endothelial function recovery was observed between these two groups within 6-month followup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinctive effects of CD34- and CD133-specific antibody-coated stents on re-endothelialization and in-stent restenosis at the early phase of vascular injury

It is not clear what effects of CD34- and CD133-specific antibody-coated stents have on re-endothelialization and in-stent restenosis (ISR) at the early phase of vascular injury. This study aims at determining the capabilities of different coatings on stents (e.g. gelatin, anti-CD133 and anti-CD34 antibodies) to promote adhesion and proliferation of endothelial progenitor cells (EPCs). The in v...

متن کامل

Comparison of endothelialization and neointimal formation with stents coated with antibodies against CD34 and vascular endothelial-cadherin.

Vascular endothelial-cadherin (VE-cadherin) is exclusively expressed on the late endothelial progenitor cells (EPC). Therefore, VE-cadherin could be an ideal target surface molecule to capture circulating late EPC. In the present study, we evaluated whether anti-VE-cadherin antibody-coated stents (VE-cad stents) might accelerate endothelial recovery and reduce neointimal formation more than ant...

متن کامل

Combination coating of chitosan and anti-CD34 antibody applied on sirolimus-eluting stents can promote endothelialization while reducing neointimal formation

BACKGROUND Circulating endothelial progenitor cells (EPCs) capture technology improves endothelialization rates of sirolimus-eluting stents (SES), but the problem of delayed re-endothelialization, as well as endothelial dysfunction, has still not been overcome. Therefore, we investigated whether the combination coating of hyaluronan-chitosan (HC) and anti-CD34 antibody applied on an SES (HCASES...

متن کامل

Influence of a layer-by-layer-assembled multilayer of anti-CD34 antibody, vascular endothelial growth factor, and heparin on the endothelialization and anticoagulation of titanium surface.

The endothelialization of the metal surface of vascular stents came into focus as a new method for improving the biocompatibility of intravascular stents. This article has its focus on building a biofunctional layer on the activated titanium surface with anti-CD34 antibody, vascular endothelial growth factor (VEGF), and heparin by a layer-by-layer (LBL) self-assembly technique, to promote the e...

متن کامل

Accelerating endothelialization of coronary stents by capturing circulating endothelial progenitor cells

Drug-eluting stents (DES) have become the standard of care for the treatment of coronary artery disease. However, late stent thrombosis has emerged as a major concern, especially in ‘off-label’ use. Pathologic studies of patients dying from late DES thrombosis demonstrate delayed arterial healing, characterized by persistent fibrin deposition and poor endothelialization. In recent years, a nove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014